期刊文献+

一种基于HMM/ANN的混合语音识别系统的设计

A Hybrid Speech Recognition System Based on HMM/ANN
下载PDF
导出
摘要 文中将自组织特征映射神经网络(SOFMNN)与隐马尔可夫模型(HMM)相结合,训练出抗噪声的HMM模型。试验表明,该模型适合于对噪声背景下的语音进行识别。同传统的CDHMM模型以及直接在语音中加入加性噪声训练出的CDHMM模型相比,该模型具有更好的抗噪鲁棒性,在信噪比较低的情况下(3dB—15dB),识别率比传统CDHMM模型有明显的提高。 This paper proposed a hybrid model method combining Self-Organizing Feature Mapping neural network with Hidden Markov Model to train noise adapting HMM. The model trained by this method is conformable to recognize the speech in noisy environment. Compared with the traditional CDHMM and the CDHMM trained by additive noise into speech, this model have better noisy robustness. In the condition of SNR is low(2dB-12dB), the correct recognition rate increased distinctly.
出处 《弹箭与制导学报》 CSCD 北大核心 2004年第S7期223-225,共3页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 哈尔滨市自然科学基金项目(2003 AFQ XJ 053)
关键词 语音识别 连续HMM 自组织特征映射神经网络 噪声背景 speech recognition CDHMM SOFMNN noise environment
  • 相关文献

参考文献5

二级参考文献6

  • 1L Rabiner,B H Juang.Fundamentals of Speech Recognition[M].Prentice Hall Press, 1993 : 112-121,348-349,125-128.
  • 2Michael Kleinschmidt,Jurgen Tchorz et al.Combining Speech Enhancement and Auditory Feature Extraction for Robust Speech Recognition[J].EISEVIER Speech Communication,2001:75-92.
  • 3Charles A Micchelli,Peder Olsen.Penalized maximum-likelihood estimation,the Baum-Welch algorithm,diagonal balancing of symmetric matrices and application to training acoustic data[J].EISEVIER,Journal of Computational and Applied Mathematics, 2000; 119 : 301-331.
  • 4Montri Karnjanadecha,Stephen A Zahorian.Signal Modeling for High-Performance Robust Isolated Word Recognition[J].IEEE TRANSACTION ON SPEECH AND AUDIO PROCESSING,2001;9(6).
  • 5Juang B H,IEEE Trans ASSP,1990年,37卷,1214页
  • 6张焱,张杰,黄志同.语音识别中隐马尔可夫模型状态数的研究[J].南京理工大学学报,1998,22(3):208-211. 被引量:5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部