7Granville A.On the number of solutions to the generalized Fermat equation. In: Number Theory, Halifax, NS, 1 9 9 4 CMS Conf Proc, 1 5,Providence, Rl: Amer Math Soc . 1995
8Ti jdeman R.Diophantine equations and diophantine approximations. In: Moilln R A ed. Number Theory and Applications, Banff, AB,1 9 8 8, Dordrecht: Kluwer Acad Publ . 1989
4Powell B. sur L′ equation Diophantine x4± y4= zp[J]. Bull SC Math,1983,107:219-223.
5Darmon H. The equation x4 -y4=zp[J]. C R Math Rep. Acad SCI Canada,1993,15(6) :286-290.
6K. Wu,M. Le. A note on the Diophantine equation x4 - y4 =zp[J].C. R Math Rep. Acad SCI Canada, 1995, (17), 197 - 200.
7Darmon H. Granville A. on the equations zm= F(x, y) and Axp+Byq=Czr[J]. Bull London Math Soc,1995, (27) :513-543.
8R. D. Mauldin. A generalization of fermat′s last theorem: the Beal coniecture and prize problem, Notices of the Amer. Math. Soc.1997.11(44) :1436-1437.