摘要
n元齐次线性方程组当其矩阵的秩小于 n时有非零解.要求出这个非零解,通常是将矩阵进行初等变换而得到.但对矩阵的秩是一个 n-1的方程组,却有一个和克莱姆法则一样的简捷的公式化解法.这一解法对三元齐次线性方程组来说特别方便.
Homogeneous linear equations of n-variables have the non-zero solutions when the rank of its matrix is less than n. To get this solution, the matrix can be proceeding elementary operation. But to the equation whose rank of matrix is n-1, there is a formulated solution as simple as the Cramer Law. This solution is very convenience for the homogeneous linear equations of 3-variables.
出处
《广西民族大学学报(自然科学版)》
CAS
2004年第S1期31-34,共4页
Journal of Guangxi Minzu University :Natural Science Edition
关键词
齐次线性方程组
矩阵的秩
非零解
homogeneous linear equations, rank of matrix, non-zero solution