期刊文献+

基于PCA的重油分馏塔故障监测与诊断分析

PCA-based Fault Detection and Diagnosis with Application to Heavy Oil Fractionator
下载PDF
导出
摘要 对系统过程数据进行主元分析,建立主元模型,可以在保留原有数据信息特征的基础上消除变量关联和部分系统噪声干扰,从而简化系统分析的复杂度。建立正确的主元模型,结合多变量统计过程控制图(Q统计图,HotellingT2图,主元得分图,贡献图),是对过程对象的进行检测和诊断的一项发展中的技术。通过对一个典型的重油分馏塔运行过程的故障监测与诊断分析,进一步说明了主元模型在确定故障特征方向和多变量统计控制图在监测和诊断故障源上的作用和有效性。同时采用了平均贡献图来直观明确地判别引起系统故障的主要原因。 Principle Component Analysis (PCA) is an effective way not only to eliminate correlation among process variables and reduce the influence of noise and disturbance on system, but also to reserve enough information of original data characteristics needed for modeling a industrial complex process. Based on principle component model, detection and diagnosis analysis is carried out on a typical Heavy Oil Fractionator with multivariate statistical techniques such as Q residuals plot, Retelling T2 plot, principle scores plot and contributions plot. In addition, mean contributions curve is used instead of common contribution histogram to diagnose the source cause of faults.
出处 《控制工程》 CSCD 2004年第S2期5-7,共3页 Control Engineering of China
基金 国家"863"计划资助项目(863-511-920-011)
关键词 主元分析 故障诊断 过程监测 多变量统计控制图 principle component analysis fault detection and diagnosis process monitoring multivariate statistical techniques
  • 相关文献

参考文献3

  • 1MacGregor J F,Kourti T.Statistical process control of multivariate process[].Control Engineering.1995
  • 2Ralston P,DePuy G,Graham J H.Computer-based monitoring and fault diagnosis: a chemical process casestudy[].ISA Transactions.2001
  • 3Martin E B,Morris A J,Zhang J.Process performance monitoring using multivariate statistical process con-trol[].IEE Proc of Control Theory and Application.1996

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部