期刊文献+

CAutoCSD-Evolutionary Search and Optimisation Enabled Computer Automated Control System Design 被引量:1

CAutoCSD-Evolutionary Search and Optimisation Enabled Computer Automated Control System Design
下载PDF
导出
摘要 This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process. This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of “computer-aided control system design” (CACSD) to novel “computer-automated control system design” (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency domains. Such performance-prioritised unification is aimed at relieving practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-commitment to such schemes. With recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytical and practical, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, and meets multiple objectives in the design of an LTI controller for a non-minimum phase plant and offers a high-performance LTI controller network for a non-linear chemical process.
出处 《International Journal of Automation and computing》 EI 2004年第1期76-88,共13页 国际自动化与计算杂志(英文版)
关键词 Linear time invariant (LTI) proportional plus integral plus derivative (PID) control system design (CSD) COMPUTER aided control system design (CACSD) performance index genetic algorithms (GA) evolutionary computation (EC) process control r Linear time invariant (LTI) proportional plus integral plus derivative (PID) control system design (CSD) computer aided control system design (CACSD) performance index genetic algorithms (GA) evolutionary computation (EC) process control r
  • 相关文献

同被引文献1

  • 1Hiroshi Kashiwagi,Yun Li.Nonparametric nonlinear model predictive control[J].Korean Journal of Chemical Engineering.2004(2)

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部