期刊文献+

A GENERALIZATION OF LEBESGUE DIFFERENTIAL THEOREM AND ITS APPLICATION 被引量:2

A GENERALIZATION OF LEBESGUE DIFFERENTIAL THEOREM AND ITS APPLICATION
下载PDF
导出
摘要 The author generalizes the classical Lebesgue differential theorem to the case of rather general metrics. Then. the author applies it to the subelliptic metric to check the integral characterization of Holder continuous functions related to the metric. The author generalizes the classical Lebesgue differential theorem to the case of rather general metrics. Then. the author applies it to the subelliptic metric to check the integral characterization of Holder continuous functions related to the metric.
作者 周振荣
出处 《Acta Mathematica Scientia》 SCIE CSCD 2001年第1期109-113,共5页 数学物理学报(B辑英文版)
基金 The project is supported by the Natural Science Foundation of China
关键词 Morrey's space Campanato's space translation-invariance Morrey's space Campanato's space translation-invariance
  • 相关文献

参考文献8

  • 1齐民友,张果平.ASYMPTOTIC EXPANSION OF DIRAC-TYPE DISTRIBUTION ASSOCIATED WITH A CLASS OF HYPERSURFACES WITH DEGENERATED CRITICAL POINTS[J].Acta Mathematica Scientia,1999,19(2):127-137. 被引量:1
  • 2Chao-Jiang Xu,Claude Zuily.Higher interior regularity for quasilinear subelliptic systems[J]. Calculus of Variations and Partial Differential Equations . 1997 (4)
  • 3Alexander Nagel,Elias M. Stein,Stephen Wainger.Balls and metrics defined by vector fields I: Basic properties[J]. Acta Mathematica . 1985 (1)
  • 4Sergio Campanato.Equazioni ellittiche del IIo ordine e spazi $$\mathfrak{L}^{(2,\lambda )} $$ .[J]. Annali di Matematica Pura ed Applicata, Series 4 . 1965 (1)
  • 5Prato da G.Spazi ( ) e loro proprieta. Annali di Matematica Pura ed Applicata . 1965
  • 6Claeson T,Hormander L.Integrationsteori. . 1970
  • 7Giaguinta M.Multiple Integrals in the Culculus of Variations and Non-linear Elliptic Systems. . 1983
  • 8Jerison D.The Poincare inequality for vector fields satisfying Hormander’s conditions. Duke Mathematical Journal . 1986

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部