期刊文献+

关于一个不等式定理的证明

下载PDF
导出
摘要 设 a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>】0且 a<sub>1</sub>+a<sub>2</sub>+a<sub>3</sub>=1 则 (a<sub>1</sub>+5)<sup>1/2</sup>+(a<sub>2</sub>+5)<sup>1/2</sup>+(a<sub>3</sub>+5)<sup>1/2</sup>≤43<sup>1/2</sup>…(1)当 d】0时,(a<sub>1</sub>+d)<sup>1/2</sup>+(a<sub>2</sub>+d)<sup>1/2</sup>+(a<sub>3</sub>+d)<sup>1/2</sup>≤(3(3d+1))<sup>1/2</sup>…(2)设 a<sub>1</sub>,a<sub>2</sub>,…,a<sub>m</sub>(m≥3且 sum from i=1 to m a<sub>i</sub>=1),d】0则 sum from i=1 to m (a<sub>i</sub>+d)<sup>1/2</sup>≤(m(md+1)<sup>1/2</sup> (m∈N)…(3)进而当 n≥l时,sum from i=1 to m (a<sub>i</sub>+d)<sup>1/n</sup>≤m<sup>1-(1/n)</sup> (md+1)<sup>1/n</sup>(m,n∈N)…(4)证明:(1),(2),(3)式是(4)式的特殊情况,现在证明(4)式。设 x<sub>i</sub>=a<sub>i</sub>+d,设 a<sub>m</sub>=sum from i=1 to m X<sub>i</sub>=md+1,把(4)式改写为 sum from i=1 to m X<sub>i</sub><sup>1/n</sup>≤m(a<sub>m</sub>/m)<sup>1/n</sup>,当 m=1,n=1时可以直接验证成立。
作者 雷金
出处 《赤峰教育学院学报》 2001年第1期102-103,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部