期刊文献+

PARTITION PROPERLY OF DOMAIN DECOMPOSITION WITHOUT ELLIPTICITY

PARTITION PROPERLY OF DOMAIN DECOMPOSITION WITHOUT ELLIPTICITY
原文传递
导出
摘要 Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for prod lems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented. : Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for prod lems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2001年第4期423-432,共10页 计算数学(英文)
基金 This work was supported in part by Hong Kong RGC DAG93/94 SC10, Competitive Earmarked ResearchGrant HKUST593/94E and the speci
关键词 Partition property Domain decomposition Non-ellipticity Degenerate parabolic problems Time-dependent Ginzburg-Landau model SUPERCONDUCTIVITY PRECONDITIONING Schwarz algorithms. Partition property, Domain decomposition, Non-ellipticity, Degenerate parabolic problems, Time-dependent Ginzburg-Landau model, Superconductivity, Preconditioning, Schwarz algorithms.
  • 相关文献

参考文献11

  • 1Xiao-Chuan Cai.Additive Schwarz algorithms for parabolic convection-diffusion equations[J]. Numerische Mathematik . 1991 (1)
  • 2Chan T F,,Mathew T P.Domain decomposition methods. Acta Numerica . 1994
  • 3Bj?rstad,P.E.,Widlund,O.B.Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM Journal on Numerical Analysis . 1986
  • 4M. Dryja,O.B. Widlund.An additive variant of the Schwarz alternating method for thecase of many subregions, Tech. . 1987
  • 5PL Lions.On the Schwarz alternating method ??, Stochastic interpretation and order properties, Domain Decomposition Methods (Los Angeles, California, 1988). . 1989
  • 6Mu Mo,ttuang Yunqing.An alternating Crank-Nicolson method for decoupling the Ginzburg-Landau equations. SIAM Journal on Numerical Analysis . 1998
  • 7J.C.Xu.lterative methods by space decomposition and subspace correction:A unifying approach. SIAM Review . 1992
  • 8J.H. Bramble,J.E. Pasciak,A.H. Schatz.The construction of preconditioners for elliptic problemsby substructuring I-III. Mathematics of Computation . 1986
  • 9X. Cai,O.B. Widlund.Domain decomposition algorithms for indefinite elliptic problems. SIAMJ. Sci. Stat. Comp . 1992
  • 10M. Mu.A linearized Crank-Nicolson-Galerkin method for the Ginzberg-Landau model. SIAM Journal on Scientific Computing . 1995

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部