摘要
非线性共振系统稳态运动方程组是含有三角函数且未知量为模态振幅和共振相位的超越代数方程组 ,并且三角函数前的系数具有对等性 .利用三角关系 sin2 α+cos2 α=1 ,可将非线性共振系统稳态运动方程组约化 。
Equations of steady state motion of the nonlinear resonance system are transcendantal algebric equations which contain trigonometric function unknown quantity of transcendantal algebric equations are modal amplitude and resonance phase,and coefficients of trigonometric equations have equity propenty.Based on the obove characteristics and by using relation of trigonometric function sin 2 α +cos 2 α =1 Equations of steady state motion of the nonlinear oscillation resonance system are simplified and easy to solve and analyze.
出处
《唐山学院学报》
2001年第4期1-3,共3页
Journal of Tangshan University
基金
河北省博士基金资助项目 ( 985 4 2 12 61D)
关键词
非线性共振系统
稳态运动方程
超越代数方程
约化
nonlinear resonance system
equation of steady state motion
transcendental equation
reduction