摘要
A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.
A series of experiments were carried out to investigate the influence of pure rare earth addition on the plasma nitriding response of low alloy steel. For this purpose, pure rare earth metals (La, Ce and Nd) were put into the plasma nitriding furnace as sputter sources during nitriding of 722M24 steel. a variety of experimental and analytical techniques were employed to evaluate the structures and hardening response of the nitrided lavers which included metallography for structural examination, glow discharge spectrometry and secondary ion mass spectrometry for chemical composition profile analysis, X-ray diffraction for phase identification and microhardness testing for hardness profile measurements. The results show that the incorporation of rare earth metals in the glow discharge. during plasma nitriding not only influences the discharge characteristics but also results in the deposition of rare earth atoms and their compounds onto the specimen surface. These significantly affect the response of the investigated steel to plasma nitriding. The extent of the influence on plasma nitriding varies with different rare earth metals.
基金
theEuropeanCommissionunderBRITE/EURAMProgramme!(BPRP -CT -97-0 5 46 )