摘要
Using nanoparticles of CeO2 and ZrO2 prepared by the chemical precipitation method as starting materials, the single-phase cubic Ce0.5Zr0.5O2 solid solution (c-Ce0.5Z0.5O2) has been synthesized under 3.1 GPa at 1073 K for the first time. The structure of the c-Ce0.5Zr0.5O2 has not been changed before and after annealing at 773 K for 1 h. Only an unknown EPR signal (g =1.990) has been observed in the c-Ce0.5Zr0.5O2 and not varied after annealing at 773 K for 1 h, which exhibited that there exists no Ce3+ in the c-Ce0.5Zr0.5O2 and the Ce4+ has not been reduced into Ce3+ after annealing. The transport mechanism is ionic for the c-Ce0.5Zr0.5O2. The bulk conductivity (a =1.2×10-5 S/cm at 823 K, σ=2.1 ×10-3 S/cm at 1123 K) is the same as that of CeO2, but smaller than that of Y2O3-stabilized ZrO2. A marked curvature at T = 823 K has been observed in the Arrhenius plot of the bulk conductivity. The activation energy below 823 K is lower than that above 823 K, and the reason has been discussed.
Using nanoparticles of CeO2 and ZrO2 prepared by the chemical precipitation method as starting materials, the single-phase cubic Ce0.5Zr0.5O2 solid solution (c-Ce0.5Zr0.5O2) has been synthesized under 3.1 GPa at 1073 K for the first time. The structure of the c-Ce0.5Zr0.5O2 has not been changed before and after annealing at 773 K for 1 h. Only an unknown EPR signal (g =1.990) has been observed in the c-Ce0.5Zr0.5O2 and not varied after annealing at 773 K for 1 h, which exhibited that there exists no Ce3+ in the c-Ce0.5Zr0.5O2 and the Ce4+ has not been reduced into Ce3+ after annealing. The transport mechanism is ionic for the c-Ceo.5Zr0.5O2. The bulk conductivity (σ =1.2× 10-5 S/cm at 823 K, σ=2.1 ×10-3 S/cm at 1123 K) is the same as that of CeO2, but smaller than that of Y2O3-stabilized ZrO2. A marked curvature at T = 823 K has been observed in the Arrhenius plot of the bulk conductivity. The activation energy below 823 K is lower than that above 823 K, and the reason has been discussed.
作者
XU Dapeng, WANG Quanyong, LU Zhe, LIU Zhiguo, ZHANG Gongmu & SU Wenhui1. Department of Physics, Jilin University, Changchun 130023 China
2. International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, China
3. Center for Condensed Matter and Radiation Physics, China Center of Advanced Science and Technology (World Laboratory), Beijing 100080, China
基金
This work was supported by the National Natural Science Foundation of China (Grant No. 19874023).