摘要
本文研究具有n(n≥2)个左零因子,且R的元数大于n的有限环,证明了如下定理:1.如果存在R的一个左零因子a,使Ra=Dl(此处Dl表示R的一切左零因子集),则Dl是R的幂零理想,并且Dl=J(R).当且仅当|R|=n2时,Dl的幂零指数为2.而当Dl的幂零指数为K时,存在素数p以及自然数s,使得n=p(k-1)s且|R|=nm,m|n.2.对于任一非零左零因子a均有Ra=Dl的充要条件是|R|=n2.
Let R be a finite ring with n(n ≥2)left zero divisors and |R|>n. The following theorems are proved in this paper. 1)Let D l be the set of all left zero divisors of R .If there exists an element a of D l such that Ra=D l, then D l is a nilpotent ideal of R and D l=J(R). 2)In 1),| R|=n 2 is the necessary and sufficient condition such that the index of nilpotency of D l is 2. 3)In 1),for every non-zero left zero divisor a we have Ra=D l is the necessary and sufficient condition such that the index of nilpotency of D is 2. 4)In 1),if the index of nilpotency of D l is k,then there exists a nature number s and a prime number p such that n=p (k-1)s ,|R|=nm and m is a divisor of n . We pointed out some mistakes of literatures using above theorems.
出处
《中央民族大学学报(自然科学版)》
1999年第1期2-5,共4页
Journal of Minzu University of China(Natural Sciences Edition)