摘要
设G 是一个n 阶简单连通图,k≥2 是一个整数.G 的k 阶幂图记作Gk ,定义为:V( Gk) = V( G) 且对任意u ,v∈V( Gk) ( u≠v) ,( u ,v) ∈E( Gk) 当且仅当dG( u ,v) ≤k ,则对任意的k≥2 ,Gk 本原.令E(k,n) = { γ( Gk)| G 是n阶简单连通图} ,可以得到E(k ,n) =dk k+ 1 ≤d ≤n - 1 , 若2 ≤k≤n - 2 ,{2} , 若k≥n - 1 .
Let G be a connected simple graph of order n and k an integer with k ≥2. The k th power graph of G , denoted by G k , is defined as a graph with V(G k)=V(G) and for any u,v∈V(G k) (u≠v), (u,v)∈E(G k) if and only if d G(u,v)≤k . Then G k is primitive for any k≥2 . Let E(k,n)={γ(G k)|G is a connected simple graph of order n }. In this paper, we obtainE(k,n)=dkk+1≤d≤n-1, if 2≤k≤n-2, {2}, if k≥n-1.
出处
《江苏师范大学学报(自然科学版)》
CAS
1999年第4期8-9,共2页
Journal of Jiangsu Normal University:Natural Science Edition
关键词
本原图
指数
k阶幂图
primitive graph
exponent
kth power graph