期刊文献+

Study on mineral structural stability of marine 1nm manganate

Study on mineral structural stability of marine 1nm manganate
下载PDF
导出
摘要 In order to study the phase transformation between 1nm manganate and 0.7nm manganate, a series of Slum Me^(2+) manganates were made after the synthetic 1nm Na^+ manganate substituted with different kinds of divalent cations. The X-ray diffraction analysis of wet S1nm Me^(2+) manganates after 24 h room temperature dry showed that their basal d-spacing had been changed, indicating that there was phase transformation between 1nm and 0.7nm manganates. Take 1nm manganates with unstable structure collapsed into 0. 7nm manganate by losing one interlayer OH-H_2O, while those with stable structure still retained the 1nm d-spacing. This factor reminds us that the manganese nodule samples must be kept in wet condition to avoid the misleading results. The structural stabdity of 1nn manganate is mainly controlled by the interlayer divalent cations. There is a possitive correlation between the amount of cations in the interlayer and the structural stability, while the capacity of different canons in stabilizing the structure of 1nm manganate is as follows: Ni > Cu > Co > Zn > Ca>Mg > Na. In order to study the phase transformation between 1nm manganate and 0.7nm manganate, a series of Slum Me^(2+) manganates were made after the synthetic 1nm Na^+ manganate substituted with different kinds of divalent cations. The X-ray diffraction analysis of wet S1nm Me^(2+) manganates after 24 h room temperature dry showed that their basal d-spacing had been changed, indicating that there was phase transformation between 1nm and 0.7nm manganates. Take 1nm manganates with unstable structure collapsed into 0. 7nm manganate by losing one interlayer OH-H_2O, while those with stable structure still retained the 1nm d-spacing. This factor reminds us that the manganese nodule samples must be kept in wet condition to avoid the misleading results. The structural stabdity of 1nn manganate is mainly controlled by the interlayer divalent cations. There is a possitive correlation between the amount of cations in the interlayer and the structural stability, while the capacity of different canons in stabilizing the structure of 1nm manganate is as follows: Ni > Cu > Co > Zn > Ca>Mg > Na.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1999年第2期257-266,共10页 海洋学报(英文版)
关键词 Manganese nodules 1nm manganate phase transformation structural stability Manganese nodules, 1nm manganate, phase transformation, structural stability
  • 相关文献

参考文献1

  • 1P. Halbach,M. ?zkara,J. Hense. The influence of metal content on the physical and mineralogical properties of pelagic manganese nodules[J] 1975,Mineralium Deposita(4):397~411

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部