摘要
在本文中,我们定义了 C-cosine算子函数的 Abel遍历性与Cesàro遍历性,讨论了C-cosine算子函数这两种遍历性的相互关系及基本性质,得到了其强Abel遍历性在R(C)稠时的完全刻划.此外,我们还讨论了C-cosine算子函数的轨道遍历性,并借助于K-泛函,给出了C-cosine算子函数在0点以非最优化速率收敛的一个充要条件.
In this paper, the Abel-ergodicity and Cesàro-ergodicity for C-cosine operator functions on Banach spaces X are defined. The relationship between the two kinds of ergodic properties is investigated. Some related basic properties are shown. A characterization of Abel-ergodicity is established in the case of R(C) being dense in X. Moreover, the orbit-ergodicity for C-cosine operator functions is defined and dis- cussed. A sufficient and necessary condition is given in terms of K-functional, ensuring the convergence at non-optimal rates of C-cosine operator functions at 0.
出处
《应用泛函分析学报》
CSCD
1999年第2期97-107,共11页
Acta Analysis Functionalis Applicata