期刊文献+

Simplification of Potential Vorcticity and MesoscaleQuasi-balanced Dynamics Model

Simplification of Potential Vorcticity and Mesoscale Quasi-balanced Dynamics Model
下载PDF
导出
摘要 The physical characteristics of mesoscale are analyzed, and results show that the unbalanced forced motion is the fundamental cause, which leads to the evolution of some important mesoscale weather systems. In this paper, an alternative asymptotic expansion method, which is quite different from the conventional Rossby-number expansion, is used to simplify the potential vorticity equation. And the quasi-balanced (QB) model based on nonlinear balance equation is derived. The QB model, which is in analogy with the quasi-geostrophic model, can describe the fundamental characteristics of the mesoscale accurately and may be used as the basis of theoretical studies on the mesoscale atmospheric dynamics. The physical characteristics of mesoscale are analyzed, and results show that the unbalanced forced motion is the fundamental cause, which leads to the evolution of some important mesoscale weather systems. In this paper, an alternative asymptotic expansion method, which is quite different from the conventional Rossby-number expansion, is used to simplify the potential vorticity equation. And the quasi-balanced (QB) model based on nonlinear balance equation is derived. The QB model, which is in analogy with the quasi-geostrophic model, can describe the fundamental characteristics of the mesoscale accurately and may be used as the basis of theoretical studies on the mesoscale atmospheric dynamics.
作者 赵强 刘式适
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第2期304-313,共10页 大气科学进展(英文版)
关键词 Balanced motions Potential vorticity Shallow-water equations Balanced motions Potential vorticity Shallow-water equations
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部