摘要
设G是一简单无向图,C(G)表示 G的无向关联矩阵,Q(G)=C(G)C(G)~T. Q(G)的特征值称为图G的拟拉普拉斯谱.在这篇文章,我们研究图的拟拉普拉斯谱,表明G+e,L(G)和G_1VG_2拟拉普拉斯的谱.
Let G be a simple undirected graph,C(G) denote the undirected incidence matrix of G,Q(G)=C (G)C(G)~T,The eigenvalues of Q(G) be called the quasi-Laplacian spectrum of G. In this paper,we investigate the quasi-Laplacian spectrum of graph and show the quasi-Laplacian spectrum of G+e,L(G) and G, V G2.
出处
《数学理论与应用》
1999年第3期104-107,共4页
Mathematical Theory and Applications
关键词
关联矩阵
拟拉普拉斯矩阵
特征多项式
拟拉普拉斯谱
incidence matrix,quasi-Laplacian matrix,characteristic polynomial,quasi-Laplacian spectrum.