期刊文献+

图的拟拉普拉斯谱(英文) 被引量:4

The Quasi-Laplacian Sepectrum of Graphs
下载PDF
导出
摘要 设G是一简单无向图,C(G)表示 G的无向关联矩阵,Q(G)=C(G)C(G)~T. Q(G)的特征值称为图G的拟拉普拉斯谱.在这篇文章,我们研究图的拟拉普拉斯谱,表明G+e,L(G)和G_1VG_2拟拉普拉斯的谱. Let G be a simple undirected graph,C(G) denote the undirected incidence matrix of G,Q(G)=C (G)C(G)~T,The eigenvalues of Q(G) be called the quasi-Laplacian spectrum of G. In this paper,we investigate the quasi-Laplacian spectrum of graph and show the quasi-Laplacian spectrum of G+e,L(G) and G, V G2.
机构地区 山东临沂师专
出处 《数学理论与应用》 1999年第3期104-107,共4页 Mathematical Theory and Applications
关键词 关联矩阵 拟拉普拉斯矩阵 特征多项式 拟拉普拉斯谱 incidence matrix,quasi-Laplacian matrix,characteristic polynomial,quasi-Laplacian spectrum.
  • 相关文献

同被引文献15

  • 1CaiT,Brown L. Wavelet Shrinkage for None quispaced Samples[J].Annals of Statistics, 2005,26 ( 5 ): 1783-1799.
  • 2Donoho David L.Denoising by Soft-thresholding [J].IEEE Transactions on Information Theory, 1999.1 (2): 103-122.
  • 3Aouadi M. Hybrid Laplace transform-finite element method to a generalized eleetromagneto-thermoelastic problem [J]. Applied Mathematical Modelling,2007, 31:712-726.
  • 4Zhang lei, Bao Paul, Wu Xiaolin. Hybrid Inter-and Intra-wavelet Scale Image Restoration[J].pattern Reeognition Letter,2003,36(8): 1726-1753.
  • 5CaiT,Brown L. Wavelet Shrinkage for None quispaced Samples[J].Annals of Statistics, 2005,26 (5): 1783-1799.
  • 6Donoho David L. Denoising by Soft-thresholding [J].IEEE Transactions on Information Theory, 1999.1 (2): 103-122.
  • 7Aouadi M. Hybrid Laplace transform-finite element method to a generalized eleetromagneto -thermoelastic problem [J]. Applied Mathematical Modelling, 2007, 31:712-726.
  • 8Zhang lei, Bao Paul, Wu Xiaolin. Hybrid Inter-and Intrawavelet Scale Image Restoration[J].pattern Recognition Letter,2003,36(8): 1726-1753.
  • 9黄剑玲,邹辉.基于高斯Laplace算子图像边缘检测的改进[J].微电子学与计算机,2007,24(9):155-157. 被引量:18
  • 10H. Weber, H. Hullmann, Porenbeton Handbuch, vol. 5, Aufl. Bau- verlag, Wiesbaden, 2002.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部