摘要
An eight year national program aiming at the development of high temperature intermetallics was started by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST MITI) in 1989 and almost successfully ended in 1997. This national program with emphasis on basic aspects of the properties and processing of high temperature intermetallics, Ti Al and Nb Al, have given a considerable impetus to intermetallics research in Japan. This is an overview of the results of the program and implications of the program for the future development of high temperature intermetallics compounds for structural applications. Alloy design, evaluation of fundamental mechanical properties, fabrication processing and surface modification have been investigated using these two alloy systems. Based on the obtained results, the concept of alloy design was established, and new technologies, were developed for metal injection moding, casting, rheocasting, sheet casting and rolling, superplastic forming, heat treatment, melting and investment casting, gas atomization, direct rolling of alloyed powders, near net shaping by HIPing alloyed powders and oxidation resistant surface coating. Some of suggested intermetallics alloys are expected to be basics for ultra high temperature structural materials in the next generation because of the extremely high strengths at high temperature, 1 100 ℃ and 1 800 ℃, beyond conventional Ni base superalloys.
An eight year national program aiming at the development of high temperature intermetallics was started by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST MITI) in 1989 and almost successfully ended in 1997. This national program with emphasis on basic aspects of the properties and processing of high temperature intermetallics, Ti Al and Nb Al, have given a considerable impetus to intermetallics research in Japan. This is an overview of the results of the program and implications of the program for the future development of high temperature intermetallics compounds for structural applications. Alloy design, evaluation of fundamental mechanical properties, fabrication processing and surface modification have been investigated using these two alloy systems. Based on the obtained results, the concept of alloy design was established, and new technologies, were developed for metal injection moding, casting, rheocasting, sheet casting and rolling, superplastic forming, heat treatment, melting and investment casting, gas atomization, direct rolling of alloyed powders, near net shaping by HIPing alloyed powders and oxidation resistant surface coating. Some of suggested intermetallics alloys are expected to be basics for ultra high temperature structural materials in the next generation because of the extremely high strengths at high temperature, 1 100 ℃ and 1 800 ℃, beyond conventional Ni base superalloys.
出处
《中国有色金属学会会刊:英文版》
CSCD
1999年第S1期346-354,共9页
Transactions of Nonferrous Metals Society of China