摘要
The temporal and spatial variations of the ten-day mean surface latent heat flux (TMLH) have been analyzed in this paper based on the data of NCEP from January of 1979 to December of 1995 in the South China Sea (SCS) monsoon region. It is found that there exist maximum centers of TMLH standard deviation in the northwest Indochina and the Indian Peninsula as well as the western Pacific, SCS, the Indian Ocean and the Bay of Bengal, and their locations and strengths change significantly during the period of SCS monsoon onset. A positive zonal deviation of TMLH occurs first in the Indochina Peninsula, apparently earlier than that in the Indian Peninsula. The appearance of maximum positive zonal deviations of TMLH approximately coincides with the summer monsoon onset. Over the Indochina and Indian Peninsulas, the TMLH increases gradually with a small amplitude of variation before the onset of summer monsoon, and the rate of increase is significantly enhanced after the onset of the monsoon; whereas over the ocean, TMLH decreases before the monsoon onset, varies little during the period of monsoon and increases gradually after the ending of monsoon. Therefore, it seems that the surface latent heat flux plays an important role in the maintenance of the summer monsoon, and its variation is an phenomenon accompanying the onset of summer monsoon.
The temporal and spatial variations of the ten-day mean surface latent heat flux (TMLH) have been analyzed in this paper based on the data of NCEP from January of 1979 to December of 1995 in the South China Sea (SCS) monsoon region. It is found that there exist maximum centers of TMLH standard deviation in the northwest Indochina and the Indian Peninsula as well as the western Pacific, SCS, the Indian Ocean and the Bay of Bengal, and their locations and strengths change significantly during the period of SCS monsoon onset. A positive zonal deviation of TMLH occurs first in the Indochina Peninsula, apparently earlier than that in the Indian Peninsula. The appearance of maximum positive zonal deviations of TMLH approximately coincides with the summer monsoon onset. Over the Indochina and Indian Peninsulas, the TMLH increases gradually with a small amplitude of variation before the onset of summer monsoon, and the rate of increase is significantly enhanced after the onset of the monsoon; whereas over the ocean, TMLH decreases before the monsoon onset, varies little during the period of monsoon and increases gradually after the ending of monsoon. Therefore, it seems that the surface latent heat flux plays an important role in the maintenance of the summer monsoon, and its variation is an phenomenon accompanying the onset of summer monsoon.
基金
Supported by the National Natural Science Foundation of China under the grants 49735170.