期刊文献+

ON THE CONVERGENCE OF NONCONFORMING FINITEELEMENT METHODS FOR THE 2ND ORDER ELLIPTICPROBLEM WITH THE LOWEST REGULARITY 被引量:1

ON THE CONVERGENCE OF NONCONFORMING FINITE ELEMENT METHODS FOR THE 2ND ORDER ELLIPTIC PROBLEM WITH THE LOWEST REGULARITY
原文传递
导出
摘要 The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an element of H-0(1)(Omega) only. The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an element of H-0(1)(Omega) only.
出处 《Journal of Computational Mathematics》 SCIE CSCD 1999年第6期609-614,共6页 计算数学(英文)
关键词 nonconforming finite element methods lowest regularity nonconforming finite element methods lowest regularity
  • 相关文献

同被引文献3

  • 1P. G. Ciarlet.The Finite Element Method for Elliptic Problems[]..1978
  • 2A.H.Schatz,Junping Wang.Some new error estimates for Ritz-Galerkin methods withminimal regularity assumptions[].Mathematics of Computation.1996
  • 3Zhang Hongqing,Wang Ming.The Mathematical Theory for the Finite Element Method[]..1991

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部