期刊文献+

平移在复数中的应用

下载PDF
导出
摘要 由复数加法法则可知,两个复数相加的几何意义是把加数中的一个复数对应的点进行有规律的平移,平移后得到的点对应的复数就是其和。利用这一观点解决有关复数问题更简捷。 依据:z=x+yi,z<sub>0</sub><sub>a</sub>+bi(x,y,a,b∈R)由复数加法法则知z+z<sub>0</sub>=(x+a)+(y+b)i 结论:复数z对应复平面内的点z,点z+(a+bi)是把点z沿实轴方向移动|a|个单位(a】0时向右移动;a【0时向左移动)再沿虚轴方向移动,61个单位(b】0时向上移动,b【0时向下移动)得到的。 本文称这种方法为平移法,下而举例说明这种方法的应用。 例1.如果复数z满足|z+i|+|z-i|=2,求|z+1+i|的最小值。 解:由复数的几何意义知复数z为以A(0,-1),B(0,1)为端点的线段AB,而z+1+i表线段AB向右平移一个单位,再向上平移一个单位得到的线段A′B′,(如图所示),而|z+1+i|最小值表线段A′B′上的点到原点的最短距离,即|z+1+i|<sub>min</sub>=|OA′|=1。
出处 《教育实践与研究(中学版)(B)》 1999年第6期36-36,共1页 Educational Practice and Research
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部