期刊文献+

一个改进的指数双向联想存储器及性能分析 被引量:5

AN IMPROVED EXPONENTIAL BIDIRECTIONAL ASSOCIATIVE MEMORY AND ITS PERFORMANCE ANALYSIS
下载PDF
导出
摘要 通过分析Wang的修正指数双向联想存储器(MeBAM),本文提出了一个新的指数式双向联想存储器.该存储器不仅保持了MeBAM的优点,如放宽了Kosko对BAM的连续性假定的限制,排除了BAM的补码问题,同时还大大改善了现有BAM的存储性能和纠错能力.通过定义一个随状态变化而减少的能量函数严格证明了改进的eBAM(IeBAM)在同步与异步方式下的稳定,从而保证了所有要存的模式对成为其稳定点.此外,借助信噪比分析方法给出了IeBAM和MeBAM的信噪比估计.理论分析和计算机模拟结果证实了IeBAM的性能确实优于MeBAM和eBAM. On the basis of analyzing Wang modified exponential bidirectional associative memory(MeBAM), a novel eBAM is proposed in this paper. The model not only retains the advantages ofthe MeBAM, for example, Kosko's continuity assumption is relaxed and its complement encodingproblem is also eliminated, but also greatly enhances its storage performance and error correctioncapability. The stability of the proposed model, in synchronous and asynchronous update modes ofneuron states, is proven by defining an energy function which decreases as the states of the modelchange so that it ensures all the training pattern pairs to become its stable points. In addition, withthe help of the signal-to-noise-ratio (SNR) approach, SNR estimations for the improved eBAM(IeBAM) and MeBAM are given. The theoretical analysis and computer simulation results verifythe advantages of the IeBAM over those of the MeBAM.
出处 《计算机学报》 EI CSCD 北大核心 1998年第S1期159-162,共4页 Chinese Journal of Computers
基金 国家"攀登计划" 国家自然科学基金
关键词 (指数)双向联想存储(eBAM) 连续性假定 能量函数 稳定性 信噪比 神经网络 (Exponential) Bidirectional associative memory, continuity assumption, energy function,stability, signal-to-noise ratio (SNR ), neural networks
  • 相关文献

同被引文献37

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部