期刊文献+

流水安全法─—一个面向软件流水技术的新的数据相关性分析方法 被引量:2

PIPELINING SAFE METHOD──A NEW WAY TO SUPPORT DATA DEPENDENCE ANALYSIS FOR SOFTWARE PIPELINING
下载PDF
导出
摘要 软件流水是一种很有效的指令级并行优化技术,而能否进行尽可能精确的数据相关性分析是决定软件流水优化效果的一个非常重要的因素.本文通过分析软件流水技术本身的特点,从保障软件流水安全为出发点,导出了一组更严洛有效的相关方程和限制不等式,大大提高了相关性判别的能力,最后与现有工作进行了比较,并用一个例子加以验证. Software pipelining is a very effective instruction level parallel compiling technique. It'squite important whether the data dependence analysis is capable of proving an accurate judgment onthe dependence relations among instructions of a user program. A more accurate dependenceanalysis will allow the software pipelining algorithm give a more effective parallel optimization of a givenuser program. By taking advantages of the characteristics of software pipelining technique, weobtain an array of new constraint inequalities for the dependence equation, which can greatly improvethe analyzing ability of most conventional dependence analysis algorithms. This method is only forthe dependence analysis of software pipelining.
出处 《计算机学报》 EI CSCD 北大核心 1998年第S1期201-206,共6页 Chinese Journal of Computers
基金 国家自然科学基金!69773028
关键词 数据相关性分析 指令级并行 软件流水 并行优化编译 Data dependence analysis, instruction level parallelism, software pipelining, parallel optimizing compilation
  • 相关文献

参考文献1

  • 1Michael Wolfe,Utpal Banerjee. Data dependence and its application to parallel processing[J] 1987,International Journal of Parallel Programming(2):137~178

同被引文献10

  • 1Rong H B, Tang Z Z, Govindarajan R, et al. Single-dimension Software Pipelining for Multi-dimensional Loops. In: Proc. of Int.Symposium on Code Generation and Optimization, 2004:163-174.
  • 2Banerjee U. Dependence Analysis. Norwell, MA Kluwer Academic Publishers, 1997.
  • 3Rong H B, Tang Z Z, Govindarajan R, et al. Single-dimension software pipelining for multi-dimensional loops[C].Proceedings Symposium on Code Generation and Optimization, 2004:163-174
  • 4Banerjee U. Dependence analysis[M]. Norwell.MA Kluwer Academic Publishers, 1997.
  • 5Psarris K, Kong X, Klappholz D. The direction I test[J]. IEEE Trans Parallel Distributed Systems, 1991, 2(4):318-326.
  • 6Li Z, Yew P C, Zhu C Q. An efficient data dependence analysis for parallelizing compilers[J]. IEEE Trans Parallel Distributed Systems, 1990, 1(1):26-34.
  • 7Chang W L, Chu C P, Wu J. The generalized lambda test: A multi-dimensional version of Banerjee's algorithms[J]. Int J Parallel and Distributed Systems and Networks, 1999, 2(2):69-78.
  • 8Wolf M, Tseng C W. The power test for data dependence [J].IEEE Trans Parallel Distributed Systems, 1992, 3(5):591-601.
  • 9Subhlok J, Kennedy K. Integer programming for array subscript analysis[J].IEEE Trans Parallel Distributed Systems, 1995, 6(6):662-668.
  • 10Pugh W, Wonnacott D, Going beyond integer programming with the omega test to eliminate false data dependences [J]. IEEE Trans Parallel Distributed Systems, 1995, 6(2):204-211.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部