摘要
人工神经网络在电力变压器故障诊断中得到应用.本文利用广义误差反传(GBP)人工神经网络建立了相应的故障诊断神经网络模型,对变压器的故障诊断进行了新的探索.这种方法能克服普通反向传播算法所存在的容易陷入局部极小点,对初值要求较高等缺点.实例诊断结果证明,这是一种比较理想的方法.
Artificial Neural Network(ANN) has been used for fault diagnosis of power transformers.Based on Generalized Error Back Propagation(GBP) algorithm,a neural network model for transformer fault diagnosis is presented.This method can overcome the main weaknesses of the back propagation algorithm which are liable to fall into local minimal value easily and to advance strict demands of initial value.The examples show that this method is effective.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
1998年第S1期86-90,共5页
Journal of Hunan University:Natural Sciences
基金
湖南省自然科学基金
关键词
人工神经网络
广义误差反传
故障诊断
电力变压器
artificial neural network,generalized error back propagation(GBP),fault diagnosis,power transformers