期刊文献+

部分线性模型中估计的强相合性

Strong consistency of a class of estimators in partial linear model
下载PDF
导出
摘要 考虑回归模型yi=xiβ+g(xi)+σiei,1≤i≤n,其中σi2=f(ui),(xi,ui)是固定非随机设计点列,f(·)和g(·)是未知函数,β是待估参数,ei是随机干扰.本文基于g(·)及f(·)的一类非参数估计的β的最小二乘估计βn和加权最小二乘估计βn,在适当的条件下证明了它们的强相合性. Consider the heteroscedastic regression model; y i=x iβ+g(x i)+σ ie i,1≤i≤n ,where σ i 2=f(u i) ,Here the design points ( x i,u i )are known and nonrandom, g (·) and f (·) are unknown functions, β is unknown parametric,and e i is an unobserved disturbance.For the least squares estimator β and the weighted leasted squares estimator β n of β based on the family of honparametric estimates of g (·) and f (·), Their strong consistency under suitable conditions is established.
作者 宋月
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 1998年第S1期73-77,共5页 Journal of Shaanxi Normal University:Natural Science Edition
关键词 部分线性模型 最小二乘估计 加权最小二乘估计 强相合性 partal linear model leaster squares estimator weighted leasted squares estimator strong consistency.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部