摘要
研究了有限图上的简单随机游动对它的顶点至少访问一次所需的期望时间,得到了完全图的期望上界为O(nlogn),(其中n为相应图的顶点数)对对称图,也给出了它的覆盖时的上、下界以上结论改进了原有的结果。
The cover time of finite graphs, that is the expected time needed for a random walk on a finite graph to visit every vertex at least one times, are studied. An upper bound of O(nlogn) for the expection of the cover time for complete graphs is given. And the bounds for the expected cover time for symmetric graphs are proved.
出处
《广东工业大学学报》
CAS
1998年第2期82-88,共7页
Journal of Guangdong University of Technology
基金
广东省自然科学基金
关键词
随机游动
一般图
完全图
对称图
覆盖时
random walks
general graph
complete graph
symmetric graph
cover time