摘要
油气储层物性参数(简称储层参数)是储层描述的重要参数。考虑到地震数据求取储层参数的复杂性与BP网络非线性映射需要利用全体样本信息且学习效率低等不足,提出采用完全利用样本信息(CUSI)的网络与遗传算法结合计算储层参数的方法。
Physical property parameters of oil gas reservoir(i.e.reservoir parameters) are important in reservoir description. Considering both the complexity of finding reservoir parameters by seismic data and the shortages of the nonlinear mapping of BP network which needs complete sample information and is the low effciency of learning.This paper presents a method combining Complete Utilization of Sample Information (CUSI) with genetic algorithm(GA) to calculate these parameters.
出处
《计算物理》
CSCD
北大核心
1998年第6期123-129,共7页
Chinese Journal of Computational Physics
基金
国家自然科学基金
湖北省自然科学基金
关键词
函数逼近
神经网络
遗传算法
储层物性
特征优化
function approximation
aitificial neural network
genetic algorithm
reservoir physical properties
feature optimization.