摘要
Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .
设{Ei∶i∈I}是一族ArchimedeanRiesz代数,Riesz代数的乘积记为Πi∈IEi,则存在完全正则的Haus-dorf空间X使得Πi∈IEi是Riesz代数同构于C(X)的,当且仅当对每一个i∈I存在完全正则的Hausdorf空间Xi使得Ei是Riesz代数同构于C(Xi)的.