期刊文献+

Application of Improved Z-Buffer Technique to RCS Computation 被引量:1

Application of Improved Z-Buffer Technique to RCS Computation
下载PDF
导出
摘要 This paper presents a new method for computation of the monostatic radar cross section (RCS) of electrically large conducting objects. Compared with the traditional Z-buffer technique, the improved one can record not only the illuminated surface of the body, but also the information about the shadowed part. So multi-scattering and RCS of cavity can be calculated. The second advantage of it is using dual representation, of the target's facet surface, in which the illuminated part is treated as bicubic patches for RCS calculation, and is simplified to flat facet when ray tracing is done. Excellent agreement with the experiment has been obtained. This paper presents a new method for computation of the monostatic radar cross section (RCS) of electrically large conducting objects. Compared with the traditional Z-buffer technique, the improved one can record not only the illuminated surface of the body, but also the information about the shadowed part. So multi-scattering and RCS of cavity can be calculated. The second advantage of it is using dual representation, of the target's facet surface, in which the illuminated part is treated as bicubic patches for RCS calculation, and is simplified to flat facet when ray tracing is done. Excellent agreement with the experiment has been obtained.
出处 《Wuhan University Journal of Natural Sciences》 EI CAS 1998年第1期53-55,共3页 武汉大学学报(自然科学英文版)
关键词 Key words RCS complex target Z BUFFER EM scattering Key words RCS complex target Z buffer EM scattering
  • 相关文献

同被引文献6

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部