摘要
The truncated version of the generalized minimal residual method (GMRES), the incomplete generalized minimal residual method (IGMRES), is studied. It is based on an incomplete orthogonalization of the Krylov vectors in question, and gives an approximate or quasi_minimum residual solution over the Krylov subspace. A convergence analysis of this method is given, showing that in the non_restarted version IGMRES can behave like GMRES once the basis vectors of Krylov subspace generated by the incomplete orthogonalization are strongly linearly independent. Meanwhile, some relationships between the residual norms for IOM and IGMRES are established. Numerical experiments are reported to show convergence behavior of IGMRES and of its restarted version IGMRES( m ).
The truncated version of the generalized minimal residual method (GMRES), the incomplete generalized minimal residual method (IGMRES), is studied. It is based on an incomplete orthogonalization of the Krylov vectors in question, and gives an approximate or quasi-minimum residual solution over the Krylov subspace. A convergence analysis of this method is given, showing that in the non-restarted version IGMRES can behave like GMRES once the basis vectors of Krylov subspace generated by the incomplete orthogonalization are strongly linearly independent. Meanwhile, some relationships between the residual norms for IOM and IGMRES are established. Numerical experiments are reported to show convergence behavior of IGMRES and of its restarted version IGMRES(m).
基金
ProjectsupportedbytheChinaStateKeyBasicResearches
theNationalNaturalScienceFoundationofChina (GrantNo .195 710 14 )
theDoctoralProgram (970 14 113)
theFoundationofReturningScholarsofChinaandtheNaturalScienceFoundationofLiaoningProvince .