期刊文献+

Monoidal functors on the category of representations of a triangular Hopf algebra

Monoidal functors on the category of representations of a triangular Hopf algebra
原文传递
导出
摘要 Let (H,R) be a triangular Hopf algebra. The monoidal functors on the category of representations of H is studied, and a universal quantum commutative algebra S e R(M) and a dual H° comodule M° for any H module M with an integral e are constructed. Both constructions given here have tensor isomorphism properties. Let (H,R) be a triangular Hopf algebra. The monoidal functors on the category of representations ofH is studied, and a universal quantum commutative algebraSeR(M) and a dual H°-comoduleM° for any H-moduleM with an integrale are constructed. Both constructions given here have tensor isomorphism properties.
作者 卢涤明
出处 《Science China Mathematics》 SCIE 1998年第2期139-146,共8页 中国科学:数学(英文版)
基金 ProjectsupportedbytheNationalNaturalScienceFoundationofChina
关键词 quasitriangular Hopf algebra braided monoidai category quantum group quasitriangular Hopf algebra braided monoidal category quantum group.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部