期刊文献+

Admissible wavelets on the Siegel domain of type one

Admissible wavelets on the Siegel domain of type one
原文传递
导出
摘要 LetSp(n, R) be the sympletic group, and letK n * be its maximal compact subgroup. ThenG=Sp(n,R)/K n * can be realized as the Siegel domain of type one. The square-integrable representation ofG gives the admissible wavelets AW and wavelet transform. The characterization of admissibility condition in terms of the Fourier transform is given. The Bergman kernel follows from the viewpoint of coherent state. With the Laguerre polynomials, Hermite polynomials and Jacobi polynomials, two kinds of orthogonal bases for AW are given, and they then give orthogonal decompositions ofL 2-space on the Siegel domain of type one ?(? n , |y| *dxdy). Let \%Sp(n,R)\% be the sympletic group, and let \%K\+*\-n\% be its maximal compact subgroup. Then \%G=Sp(n,R)/K\+*\-n\% can be realized as the Siegel domain of type one. The square\|integrable representation of \%G\% gives the admissible wavelets AW and wavelet transform. The characterization of admissibility condition in terms of the Fourier transform is given. The Bergman kernel follows from the viewpoint of coherent state. With the Laguerre polynomials, Hermite polynomials and Jacobi polynomials, two kinds of orthogonal bases for AW are given, and they then give orthogonal decompositions of \%L\%\+2\|space on the Siegel domain of type one L\+2(H\-n, |y|\+α\%d\%x\%d\%y).
出处 《Science China Mathematics》 SCIE 1998年第9期897-909,共13页 中国科学:数学(英文版)
基金 ProjectsupportedinpartbytheNationalNaturalScienceFoundationofChina (GrantNo .196 310 80 )
关键词 symplectic group SIEGEL DOMAIN of TYPE ONE ADMISSIBILITY condition wavelet transform coherent state BERGMAN kernel orthogonal decomposition. symplectic group Siegel domain of type one admissibility condition wavelet transform coherent state Bergman kernel orthogonal decomposition
  • 相关文献

参考文献18

  • 1H.G. Feichtinger,K. Gr?chenig.Banach spaces related to integrable group representations and their atomic decompositions. I. Journal of Functional Analysis . 1989
  • 2Lassalle,M.Polyomes de Laguerre generalises, C.R. Acad. Sci . Paris , Serie I . 1991
  • 3Paul,T.Functions analytic on the half-plane as quantum mechanical states, J. Mathematical Physics . 1985
  • 4Hua,L.Harmonic Analysis of Several Complex Variables in Classical Domains , Providence: Amer. Mathematical Social Sciences . 1963
  • 5Terras,A.HarmonicAnalysisonSymmetricSpacesandApplicationsI. . 1985
  • 6Murenzi,R.Wavelettransformsassociatedtothen dimensionalEuclideangroupwithdilations. Wavelets,TimeFre quencyMethodsandPhaseSpace . 1989
  • 7Vagi,S.HarmonicanalysisonCartanandSiegeldomain. StudiesinHarmonicAnalysis . 1976
  • 8Terras,A.HarmonicanalysisonsymmetricspacesandapplicationsII. . 1988
  • 9Kashiwara,W,Vergen,M.FunctionsontheShilovboundaryofthegeneralizedhalfplane. NonCommutativeHarmonicAnalysis . 1979
  • 10Bochner,S.GroupinvarianceofCauchy’’sformulainseveralvariables. Annals of Mathematics . 1994

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部