摘要
设E为一实Banach空间,映象T:E→E一致连续、强增生.设映象S:x→f-Tx+x,x∈E的值域有界且实序列{αn}∞n=0,{βn}∞n=0[0,1]满足条件αn→0,βn→0(n→∞)和∑∞n=0αn=∞,则Ishikawa迭代序列{xn}∞n=0:x0∈Exn+1=(1-αn)xn+αnSynyn=(1-βn)xn+βnSxn强收敛于方程Tx=f的唯一解.若E的对偶空间E*是一致凸的且Tx=f的解存在,则上述结论在不假定T连续的情形下仍然成立.
Let E be a real Banach space and T:E→E be a uniformly continuous strongly accretive mapping. Define S:E→E by Sx=f-Tx+x, x∈E. Suppose that the range of S is bounded and that {α n} ∞ n=0 , {β n} ∞ n=0 0,1 satisfy α n→0, β n→0(n→∞) and ∑∞n=0α n =∞. Then the Ishikawa Iteration sequence {x n} ∞ n=0 :∈E x n+1 =(1-α n)x n+α nSy n y n=(1-β n)x n+β nSx nstrongly converges to the unique solution of the equation Tx=f. If the dual space E * of E is uniformly convex and the solution of Tx=f exists, then the above conclusion still holds without assuming the continuity of T.
出处
《应用基础与工程科学学报》
EI
CSCD
1998年第3期12-19,共8页
Journal of Basic Science and Engineering