摘要
Let G be a 2 connected simple graph of order n ( n ≥5) and minimum degree δ . In this paper, we show that if for any two nonadjacent vertices u , v of G there holds | N(u)∪N(v)|≥n-δ , then G is {3,4} - vertex pancyclic unless G≌K n2,n2 .
设G是一个阶为n(n≥5)的2-连通简单图,最小度为δ.本文证明了若对G的任意两个不相邻顶点u,v都有|N(u)∪N(v)|≥n-δ成立,则G是{3,4}-一点泛圈的,除非G≌Kn2,n2.