期刊文献+

L^p-differentiability of W^(l,P)(R^n)(1<P<+∞) functions

L^p-differentiability of W^(l,P)(R^n) (1<P<+∞) functions
原文传递
导出
摘要 FROM ref. [1] it is known that every L^P(R^n) (1≤p【+ ∞) function, is L^P-continuous, 1.e. Further result about L^P-continuity has been obtained in ref. [2], §Ⅰ. 4, which is the following Proposition. Proposition. Let f∈L^P(R^n , 1【 p≤+∞. Then (?)_jf∈L^p, 1≤j≤n, if and only if ‖f(x+h)-f(x)‖L^p=O(|h|),where (?)_jf is the jth partial derivative for f in the sense of S’, i. e.
出处 《Chinese Science Bulletin》 SCIE EI CAS 1997年第3期184-189,共6页
关键词 SOBOLEV space L<sup>P</sup>-continuity L<sup>P</sup>-differentiability. Sobolev space, L^(P)-continuity, L^(P)-differentiability.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部