期刊文献+

Lipschitz functions on Banach spaces which are actually on Asplund spaces

Lipschitz functions on Banach spaces which are actually on Asplund spaces
原文传递
导出
摘要 SINCE Namioka and Phelps, starting with Asplund’s pioneering work, introduced the no-tion of Asplund spaces (those are Banach spaces on which every continuous convex function isFrechet differentiable on a dense G_δ subset) and proved that the dual of an Asplund space hasthe Radon-Nikodym property (RNP), the study of differentiability properties of functions oninfinite dimensional spaces has continued widely and deeply (see, for instance, Phelps andGiles). The research attained a great achievment after Stegall’s theorem: If the dualspace E~* has the RNP, then E is an Asplund space. Because of the N-Ph-S theorem, we
出处 《Chinese Science Bulletin》 SCIE EI CAS 1997年第24期2051-2054,共4页
关键词 MATHEMATICS LIPSCHITZ function Radon-Nikodym property SUBDIFFERENTIAL BANACH space. mathematics, Lipschitz function, Radon-Nikodym property, subdifferential, Banach space.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部