期刊文献+

Completable nilpotent Lie algebra 被引量:1

Completable nilpotent Lie algebra
原文传递
导出
摘要 THE theory of nilpotent Lie algebra is very important in the theory of finite-dimensional Lie al-gebras. Because of its extraordinary complexity, one usually studies various classes of specialnilpotent Lie algebras. In the study of complete Lie algebras, a class of special nilpotent Lie al-gebras (called completable nilpotent Lie algebras) was discovered. In this letter, we will
出处 《Chinese Science Bulletin》 SCIE EI CAS 1997年第21期1847-1847,共1页
  • 相关文献

同被引文献11

  • 1PLATONOV V P, POTAPCHIK A E. New Combinatorial Proper- ties of Linear Group Algebra[ M]. Waterloo: Journal of Algebra, 2001 : 3 -451.
  • 2TaBreab O H, CaMcouoB IO B. YnanoTeaTaOCTb O6pasa Yipe~cTaaneH~q F2 (x,y) MaTpaUaM~ a3 GL( n, C), n = 2,3,4, Fipn Ycnosan OTo6pax~esaa 06pa3ymmmx ~ I~pHMHTHBHblX ~gJleMenToS B YaanoTenXsble MaTpa~bI [ .I ]. ~Oga. HAH Beaapyc~, 2001, 45 (6): 29- 32.
  • 3TAVGEN O I, DU Junhua, LIU Chunyan. The Representation Im- age Unipotency of the Group F2 by mapping Primitive Elements into Unipotent Matrices with Small Jordan Blocks[ J]. Problems of Physics, Mathematics and Technics,2011,3 (8) :81 - 83.
  • 4H CHHbCYH. ,/L~nel~IFIbIe HpyRcTaBaeHHa CBO6ORHbIX Fpynn [M]. PHBIII: Mmlcx, 2011:11-61.
  • 5MAFHYC B, KAPPAC A, CO~HT3p ~. KOM6HHaTOpHaa Teopvm Fpyrm: Hpe~cTaBneH~e Fpylm B TepM~max O6pa3ylomHx H CooTHomeimI~ FIo~ Pen [ J ]. M. J~. Fp~tH~mHrepa. HaABo Hayxa, 1974, 2(3) : 22 -36.
  • 6COHEN A M, GRAAF W A. de R6NYAI L. Computation in Fi- nite-dimensional Lie Algebras[J]. Discrete Mathematics & Theo- retical Computer Science, 1997, 1 (1) :53 -62.
  • 7LIU Wende, HUA Xiuying, SU Yucai. Derivations for the Even Parts of the Odd in Modular Case [ J ] Acta Math. Sin. English Ser, 2009, 25(3) : 355 -378.
  • 8姜翠波,孟道骥.某些完备李代数的结构[J].数学学报(中文版),1998,41(2):267-274. 被引量:2
  • 9华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,18(1):76-79. 被引量:3
  • 10田丽军,关宝玲,王春艳.n-李超代数的Frattini-子代数[J].东北师大学报(自然科学版),2013,45(2):39-42. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部