摘要
The structures of three operating regions in HT-6B Tokamak have been studied by soft X-ray tomo-graphic system with high sensibility and high time-space resolution. One of the requisites for forming sawtooth discharge is the effective heating action in the central region. In the sawtooth region there are five evolutional phases and five types of magnetic surface structures correspondingly; that is, the concentric, the eccentric, the double-core, the 'MHD-type' and the 'ultra-MHD type' magnetic surface structures. In the MHD oscillation region, there is a stable 'MHD-type' magnetic surface structure. It consists of a crescent 'hot core' and a circular 'cold bubble' and rotates in the diamagnetic direction of electrons. In the resonant region, the resonant helical field improves the heating status and suppresses the MHD disturbances; therefore the single 'MHD-type' magnetic surface changes into a sawtooth type one
The structures of three operating regions in HT-6B Tokamak have been studied by soft X-ray tomo-graphic system with high sensibility and high time-space resolution. One of the requisites for forming sawtooth discharge is the effective heating action in the central region. In the sawtooth region there are five evolutional phases and five types of magnetic surface structures correspondingly; that is, the concentric, the eccentric, the double-core, the "MHD-type" and the "ultra-MHD type" magnetic surface structures. In the MHD oscillation region, there is a stable "MHD-type" magnetic surface structure. It consists of a crescent "hot core" and a circular "cold bubble" and rotates in the diamagnetic direction of electrons. In the resonant region, the resonant helical field improves the heating status and suppresses the MHD disturbances; therefore the single "MHD-type" magnetic surface changes into a sawtooth type