期刊文献+

A Comparative Study of the Atmospheric Layers below First Lifting Condensation Level for Instantaneous Pre-Monsoon Thunderstorm Ocurence at Agartala(23°30′N,91°15′E) and Ranchi(23°14′N,85°14′E) of India

A Comparative Study of the Atmospheric Layers below First Lifting Condensation Level for Instantaneous Pre-Monsoon Thunderstorm Occurrence at Agartala (23°30′N, 91°15′E) and Ranchi (23°14′N, 85°14′E) of India
下载PDF
导出
摘要 An attempt has been made to investigate the role of vertical wind shear, convective instability and the thermodynamic parameter ( θ es -θ e ) below the first lifting condensation level (FLCL) in the occurrence of instantaneous premonsoon thunderstorm over Agartala (AGT) and Ranchi (RNC) at 12 GMT. Radiosonde data of 1988 have been utilized here. The study has however been confined to 1000 hPa-500 hPa range at most. Here the convectively unstable layers with positive vertical wind shear upto 500 hPa have been termed as ‘Favourable Layers’ (FL) and the level at which an initially stable layer turns out to be convectively unstable for the first time has been termed as ‘Transition Level’ (TL). It is observed that the changes in vertical wind shear are positive at TL at the time of occurrence of thunderstorm (TS) and the corresponding change is negative on fair-weather situation. Moreover, the 90% confidence interval for ( θ es -θ e ) reveals that for AGT the upper layer thermodynamic characteristic is important at the time of occurrence of TS whereas for RNC, the value of ( θ es -θ e ) at the surface is much more effective. An attempt has been made to investigate the role of vertical wind shear, convective instability and the thermodynamic parameter ( θ es -θ e ) below the first lifting condensation level (FLCL) in the occurrence of instantaneous premonsoon thunderstorm over Agartala (AGT) and Ranchi (RNC) at 12 GMT. Radiosonde data of 1988 have been utilized here. The study has however been confined to 1000 hPa-500 hPa range at most. Here the convectively unstable layers with positive vertical wind shear upto 500 hPa have been termed as ‘Favourable Layers’ (FL) and the level at which an initially stable layer turns out to be convectively unstable for the first time has been termed as ‘Transition Level’ (TL). It is observed that the changes in vertical wind shear are positive at TL at the time of occurrence of thunderstorm (TS) and the corresponding change is negative on fair-weather situation. Moreover, the 90% confidence interval for ( θ es -θ e ) reveals that for AGT the upper layer thermodynamic characteristic is important at the time of occurrence of TS whereas for RNC, the value of ( θ es -θ e ) at the surface is much more effective.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第1期94-98,共5页 大气科学进展(英文版)
关键词 Convective instability Vertical wind shear Saturated equivalent potential temperature Equivalent potential temperature Confidence interval Convective instability, Vertical wind shear, Saturated equivalent potential temperature, Equivalent potential temperature, Confidence interval
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部