期刊文献+

NUMERICAL SOLUTION OF VISCOUS FLOW PAST A SOLID SPHERE WITH THE CONTROL VOLUME FORMULATION 被引量:3

NUMERICAL SOLUTION OF VISCOUS FLOW PAST A SOLID SPHERE WITH THE CONTROL VOLUME FORMULATION
下载PDF
导出
摘要 The control volume formulation with the QUICK finite difference scheme is used to solveincompressible liquid flow past a solid sphere in terms of stream function and vorticity.Several tech-nical points are addressed on improving the accuracy and efficiency of numerical simulation of similarproblems of fluid flow.In particular,the importance of suitable specification of the distortion func-tion to enforcing the far field boundarv conditions is emphasized. The control volume formulation with the QUICK finite difference scheme is used to solve incompressible liquid flow past a solid sphere in terms of stream function and vorticity. Several technical points are addressed on improving the accuracy and efficiency of numerical simulation of similar problems of fluid flow. In particular, the importance of suitable specification of the distortion function to enforcing the far field boundary conditions is emphasized.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第2期13-24,共12页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China.
关键词 SPHERE LAMINAR flow numerical simulation control VOLUME FORMULATION QUICK scheme sphere, laminar flow, numerical simulation, control volume formulation, QUICK scheme
  • 相关文献

同被引文献16

  • 1Clift R, Grace J R, Weber M E. Bubbles, Drops and Particles [M]. New York: Academic Press, 1978.
  • 2Glowinski R, Pan T W, Hesla T I,et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow [J]. Journal of Computational Physics, 2001, 169(2): 363.
  • 3Unverdi S O, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows [J]. Journal of Computational Physics, 1992, 100(1): 25.
  • 4Fedkiw R P. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method [J]. Journal of Computational Physics, 2002, 175(1): 200.
  • 5Fedkiw R P, Aslam T, Merriman B,et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method) [J]. Journal of Computational Physics, 1999, 152(2): 457.
  • 6Dou H S, Phan-Thien N. The flow of an Oldroyd-B fluid past a cylinder in a channel: adaptive viscosity vorticity (DAVSS-ω) formulation [J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 87(1): 47.
  • 7Caola A E, Joo Y L, Armstrong R C, et al. Highly parallel time integration of viscoelastic flows [J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 100(1-3): 191.
  • 8Aboubacar M, Matallah H, Tamaddon-Jahromi H R,et al. Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method [J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 104(2-3): 125.
  • 9Smith M D, Joo Y L, Armstrong R C,et al. Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders [J]. Journal of Non-Newtonian Fluid Mechanics, 2003, 109(1): 13.
  • 10Yang C, Mao Z S. Numerical simulation of viscous flow of a non-Newtonian fluid past an irregular solid obstacle by the mirror fluid method, Proceedings of the Third International Conference on CFD in the Minerals and Process Industries (Editors: P.J. Witt and M.P. Schwarz) [C]. CSIRO Australia, 2003. 391-396.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部