摘要
提出一种李代数方法描述分子反应碰撞问题.给出了含有主要动力学参量的S-矩阵元、分子碰撞跃迁几率以及反应体系能量统计平均值随时间演化的解析表达式.讨论了一个简单排斥势场中的原子-双原子分子共线反应体系,以阐明这种新方法的要点。
The dynamical Lie algebraic method for describing the reactive collisions is presented. The great advantage of the Lie algebraic method is that it can give analytically the expressions of the evolution operator. Once the dynamical Lie algebra and hence the dynamical Lie group are generated for a given Hamiltonian, the evolution operator U (t, t0) ) as the elements of the dynamical Lie group is a function of the group parameters. These paramcters can be determined in general by solving the coupled first-order nonlinear differential e-quations of the group parameters. Because of these featulres in this new method we are able to give the analytical expressions that include the main dynamical parameters, for S-matrix ele-ments, the transition probability and the evolution of the expectation value of the energy for the reaction system.In order to demonstrate essentials of this hew method, as a simple example, we dealt with the collinear collisions for nonreactive atom-diatom system on a repulsive potential.
出处
《分子科学学报》
CAS
CSCD
1997年第4期194-200,共7页
Journal of Molecular Science
基金
国家自然科学基金
山东省自然科学基金
关键词
反应碰撞
S-矩阵元
跃迁几率
dynamical Lie algebraic method
reactive collision
S-matrix elements
transition probability