摘要
Halin图是3-连通平面图,且存在一个面,去掉与该面关联的边后是一棵树。图的边列表染色是任给图G的每条边e配一颜色集合L(e),满足|L(e)|=k,k为某确定整数,G的每条边若均可着从L(e)中选择出的一种颜色,使得任一关联的边对着色不同,则称G是k一边可选择的,min(k)称为G的边选择数或边列表色数,记(G)。本文对Halin图证明了列表染色猜想在Δ≠3时成立。即xL=x。
A Halin graph G is a 3-Connected planar graph with a face f such that G - E(f) is a tree, The edge list chromatic number of a graph G, denoted by X.(G), is the minimum number k such that if we give lists of k colors to each edge of G, there is a edge coloring of g, Where each edge receives a color from its own list no matter what the lists are. In this paper, we prove the 'List Coloring Conjecture' for Halin graphs with Δ≠3, i.e. XL(G) = X-(G).
出处
《云梦学刊》
1997年第4期14-17,共4页
Journal of Yunmeng