摘要
古希腊数学家和哲学家(欧几里得)在他的名著《几何原本》中巧妙地利用等积变换来完成了勾股定理的证明。我国古代数学家对勾股定理的证明也是利用面积的变换来完成的。用面积作为媒介可以证一些比较复杂的几何题,原因是三角形(或其他多边形)的面积与其边、角是有密切联系的(有很多公式揭示了这种联系),面积是多边形的一个整体量,而边、角是多边形的局部元素,巧妙地利用面积与边角的关系式是由整体到局部(或由局部到整体)过渡的有效手段。对有些证明线段相等、角度相等、和差倍分、比例式等问题采用“面积证法”有时会显得特别简便。