摘要
Leaf area index (LAI) of natural vegetation is recognized as the most important variable for measuring vegetation structure over large areas, and for relating it to energy and mass exchange, which has been successfully estimated from satellite resolution sensors. In this paper, according to the statistical analysis based on a lot of forest plots, the mathematical models of LAI distribution patterns in the hydro thermal spaces for five coniferous forest types in China were established. For the cold temperate larch forests growing in the dry and cold climate, their LAI increases with the increasing of warm index and precipitation in the way of hyperbolic quadratic surface. For the cold temperate spruce fir forests and temperate Pinus tabulaeformis forests, their LAI is negatively related to the annual mean air temperature in the way of the natural exponential curve, in order to adapt to the water oppressed environments. For the subtropical Pinus massoniana forests and Cunninghamia lanceolata forests growing in the warm and moist climate, their LAI is related to the annual mean air temperature in the way of the parabolic quadratic curve.
Leaf area index (LAI) of natural vegetation is recognized as the most important variable for measuring vegetation structure over large areas, and for relating it to energy and mass exchange, which has been successfully estimated from satellite resolution sensors. In this paper, according to the statistical analysis based on a lot of forest plots, the mathematical models of LAI distribution patterns in the hydro thermal spaces for five coniferous forest types in China were established. For the cold temperate larch forests growing in the dry and cold climate, their LAI increases with the increasing of warm index and precipitation in the way of hyperbolic quadratic surface. For the cold temperate spruce fir forests and temperate Pinus tabulaeformis forests, their LAI is negatively related to the annual mean air temperature in the way of the natural exponential curve, in order to adapt to the water oppressed environments. For the subtropical Pinus massoniana forests and Cunninghamia lanceolata forests growing in the warm and moist climate, their LAI is related to the annual mean air temperature in the way of the parabolic quadratic curve.