摘要
The results of the new concept of coastal sea circulation are demonstrated by numerical simulations for the first time.The numerical experiments in three types of rectangular model seas illustrate the dependence of circulation on tidal phases due to the convectively nonlinear effect which is estimated by a newly defined drift dispersion index.Then,the present theory is applied in the Bohai Sea of China.At the Bohai Straits and the Huanghe River mouth area the circulation direction even reverses owing to different initial tidal phases which shows that the theory copes with nonlinearity well.The calculated M2 tide-induced residual circulation shows that a clockwise gyre exists in the center of an anticlockwise gyre in the central Bohai Sea due to the topographic features.In the Bohai Gulf the tide induced circulation shows a 3D structure with outflow at the surface and the inflow at the bottom which can partly explains the spread of the Huanghe River fresh water out of the Bohai Gulf and the inflow of the sediment from the Huanghe River.
The results of the new concept of coastal sea circulation are demonstrated by numerical simulations for the first time.The numerical experiments in three types of rectangular model seas illustrate the dependence of circulation on tidal phases due to the convectively nonlinear effect which is estimated by a newly defined drift dispersion index.Then,the present theory is applied in the Bohai Sea of China.At the Bohai Straits and the Huanghe River mouth area the circulation direction even reverses owing to different initial tidal phases which shows that the theory copes with nonlinearity well.The calculated M2 tide-induced residual circulation shows that a clockwise gyre exists in the center of an anticlockwise gyre in the central Bohai Sea due to the topographic features.In the Bohai Gulf the tide induced circulation shows a 3D structure with outflow at the surface and the inflow at the bottom which can partly explains the spread of the Huanghe River fresh water out of the Bohai Gulf and the inflow of the sediment from the Huanghe River.
基金
The National Key Basic Research Science Foundation ("973"Project) of China under contract No. 2002CB412402
the National Natu-ral Science Foundation of China under contract No. 40276007
Program for New Century Excellent Talents in University of China under contract No.NCET-05-0592