期刊文献+

神经网络用于精确预言含F铋系高温超导的T_(c)

ANN Applied to Predict Accurately T_(c) of BiPbSrCaCuOF Superconductors
下载PDF
导出
摘要 本工作通过选取适当的拓朴结构,特别是对零电阻转变温度Tc的数据采用压缩与还原的技术处理,建立了一个基于误差反向传播(简记为B-P)算法的人工神经网络。该网络可根据制备含F铋系高温超导材料的几个主要实验参数,相当精确地预言此类超导体的Tc。本方法显然具有一般意义,从而有力地促进了材料的计算机辅助设计的研究工作,使之进一步趋于成熟。 By selecting a proper topologic structure, especially by compressing and reducing the T.data,we have established an ANN(artificial neural network) Based on the B-P learning algorithm, which can be used to predict guite accurately To of the F-droped ceramic supercondoctors from some of their experimental parameters. The present work is of generality and thus has prompted the development of computer-aided materials design.
作者 潘涛 彭石安
出处 《苏州科技学院学报(社会科学版)》 1996年第1期1-5,共5页 Journal of University of Science and Technology of Suzhou:Social Science
关键词 人工神经网络 B-P学习算法 材料设计 零电阻转换温度T_(c) Artifcal neural network Back Propagation algorithm Material design Ceramic temperature
  • 引文网络
  • 相关文献
;
使用帮助 返回顶部