摘要
研究Gauss随机变量序列的0-1律与相关的抽象Wiener空间.主要结果如下:设{Fn(w)}是概率空间(Ω,,P)上的Gauss随机变量序列.若对任何实数是高斯随机变量,则有收敛或1。
The 0-1 Laws of sequences of Gaussinn stochastic variables and related abstract Wiener spaces are studied. The main result is as follows:Let {Fn(w) } be a sequence of Gaussian stochastic varisbles on a probability space, Suppose that for any real numbers is a Gaussinn stochastic variable.Then we have
出处
《上海师范大学学报(自然科学版)》
1996年第4期1-5,共5页
Journal of Shanghai Normal University(Natural Sciences)