期刊文献+

浅谈数学中的定义和证明

下载PDF
导出
摘要 一、数华中的定义方法1.种属定义:它是通过揭示相近的种加上属差来给概念下定义的方法。即是先找出要下定义的概念的相近的种,然后再找出它在同一种概念中与其他概念的差别来给概念下定义的。例如:等腰三角形就是有两边相等的三角形,下定义时先找出被定义概念的种“三角形”,然后加上它与同一种概念的属差“有两边相等”,就达到给等腰三角形下定义的目的。又如:对正棱柱下定义时,也是先找出被下定义概念的种“直棱柱”,然后再找出它与其它立棱柱的属差(不同点)即底面是“正多边形”,于是达到给正棱柱上定义:“底面是正多边形的棱柱叫正棱柱”。2,发生定义:它是指出被定义概念的对象是用什么方法产生的,并以此来揭示它的基本特性的定义方式。
作者 周少强
出处 《梧州学院学报》 1995年第1期55-57,共3页 Journal of Wuzhou University
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部