期刊文献+

DETERMINATION OF AERODYNAMIC PARAMETERS OF CROP CANOPIES WITH A CENTER-OF-PRESSURE METHOD

DETERMINATION OF AERODYNAMIC PARAMETERS OF CROP CANOPIES WITH A CENTER-OF-PRESSURE METHOD
原文传递
导出
摘要 Using data on leaf area density and wind profiles above and within canopies of wheat,rice,soybean and corn,the center-of-pressure method (CPM),originally proposed by Thom (1971),is first validated in the field.A physically-based model for directly calculating zero-displacement height (d) is derived.The comparison between the friction velocity (u_*) estimated with CPM and that with eddy correlation technique shows that CPM not only works well in the field,but also produces more steady and accurate estimates of aerodynamic parameters (which are hardly affected by atmospheric thermal stability),than those with the widely-used log-profile fitting method in diabatic atmosphere. The results presented in this paper also demonstrate that the ratios of d,z_0 to crop height h usually vary with canopy ar- chitecture,atmospheric stratification and turbulent exchange intensity,and are not just constants as commonly assumed or used.d/h raises with an increase of relative height of the maximum foliage layer and wind extinction coefficient within the canopy.Only for crops with short stem and moderate foliage density,can the relations d= 0.64h,z_0=0.08h keep stable.In addition,for long stem crops or sparse canopies,the fairly large shear stress at the soil surface and the va- riation of the exponent in the relationship between drag coefficient and wind speed undoubtedly influence the accuracy of CPM to a certain extent. Using data on leaf area density and wind profiles above and within canopies of wheat,rice,soybean and corn,the center-of-pressure method (CPM),originally proposed by Thom (1971),is first validated in the field.A physically-based model for directly calculating zero-displacement height (d) is derived.The comparison between the friction velocity (u_*) estimated with CPM and that with eddy correlation technique shows that CPM not only works well in the field,but also produces more steady and accurate estimates of aerodynamic parameters (which are hardly affected by atmospheric thermal stability),than those with the widely-used log-profile fitting method in diabatic atmosphere. The results presented in this paper also demonstrate that the ratios of d,z_0 to crop height h usually vary with canopy ar- chitecture,atmospheric stratification and turbulent exchange intensity,and are not just constants as commonly assumed or used.d/h raises with an increase of relative height of the maximum foliage layer and wind extinction coefficient within the canopy.Only for crops with short stem and moderate foliage density,can the relations d= 0.64h,z_0=0.08h keep stable.In addition,for long stem crops or sparse canopies,the fairly large shear stress at the soil surface and the va- riation of the exponent in the relationship between drag coefficient and wind speed undoubtedly influence the accuracy of CPM to a certain extent.
作者 覃文汉
出处 《Acta meteorologica Sinica》 SCIE 1995年第1期78-86,共9页
关键词 aerodynamic parameters crop canopy center-of-pressure method(CPM) Yucheng Comprehensive Experimental Station aerodynamic parameters crop canopy center-of-pressure method(CPM) Yucheng Comprehensive Experimental Station
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部