摘要
若函数y=f(x)的反函数x=f-1(y)存在且可积,则有此公式将求f(X)的不定积分转化为求其反函数f-1(y)的不定积分.待积出之后,再用直接函数表示.更一般地,若g(X)的一个原函数G(X)易求且y=f(X)的反函数X=f-1(y)好解出来,则进一步可得到积分的法则.
The indefinite integral of a function y=f(x) can be expressed by the following equation, if and only if,the function's inverse function x=f-1 (y) exists and can be integrated Which transforms the indefinite integral of the function f(x) to integrate its inverse function f-1(y).After integrated the inverse function, using equation y = f(x) to express the integral in variable x.In general, if the primitive function G(x) of function g(x) is easy to get and the inverse function x=f-1 (y) of function y=f(x) is easy to solve, then
出处
《陕西理工学院学报(社会科学版)》
1995年第6期8-10,共3页
Journal of Shaanxi University of Technology:Social Sciences
关键词
不定积分
反函数
积分法则
Indefinite integral
Inverse function
Integral operation